
Review and Analysis of Straggler Handling
Techniques

Ashwin Bhandare#1, Jitin George#2, Supreet Deshpande#3, Yash Karle#4

#Department of Information Technology, Pune Institute of Computer Technology

Savitribai Phule Pune University, Pune

Abstract— Distributed processing frameworks split a data
intensive computation job into multiple smaller tasks, which
are then executed in parallel on commodity clusters to achieve
faster job completion. A natural consequence of such a parallel
execution model is that slow running tasks, commonly called
stragglers potentially delay overall job completion. Straggler
tasks continue to be a major hurdle in achieving faster
completion of data intensive applications running on modern
data-processing frameworks. Such stragglers increase the
average job duration by 47% in data clusters of Facebook and
Bing even after these companies using state of the art straggler
mitigation techniques. This is because current mitigation
techniques all involve an element of waiting and speculation.
Existing straggler mitigation techniques are inefficient due to
their reactive and replicative nature – they rely on a wait-
speculate-execute mechanism, thus leading to delayed
straggler detection and inefficient resource utilization. Hence a
full cloning of small jobs, avoiding waiting and speculation
altogether is proposed in a system called as Dolly. Dolly utilizes
extra resources due to replication. Therefore Wrangler, a
system that proactively avoids situations that cause stragglers
was presented which automatically learns to predict such
situations using a statistical learning technique based on
cluster resource utilization counters. Also predictors for
similar nodes or workloads are likely to be similar and can
share information, suggesting a multi-task learning (MTL)
based approach. Thus we have reviewed some of the
approaches of scheduling algorithms like LATE, SAMR and
ESAMR, Dolly and Wrangler. Thus we have reviewed some of
the approaches of scheduling algorithms like LATE, SAMR
and ESAMR, Dolly and Wrangler.

Keywords—Straggler, Speculative Execution, LATE, SAMR,
ESAMR, Dolly, Wrangler, Predictive Models, MTL

I. INTRODUCTION
 Today, data is getting generated at an unprecedented scale due
to popular Internet-based computer applications that serve millions
of users, such as e-commerce websites and social networks. The
rate at which this data is growing has rendered parallel processing
on commodity compute clusters an inevitable and an attractive
option.

A. Motivation
Google originally proposed its MapReduce framework [1]

allowing them to process enormous amounts of data. MapReduce
is highly scalable to large clusters of inexpensive commodity
computers. Hadoop, a popular open source implementation of
MapReduce, has been widely adopted by industries of various
sizes. For accelerating a job’s completion time, MapReduce
divides a data intensive computation job into multiple smaller
tasks. These tasks are executed in parallel on multiple machines
(nodes) in a compute cluster. A job finishes when all its tasks have
finished execution. A key benefit of such distributed parallel

processing frameworks is that they automatically handle failures,
without needing extra e�orts from the programmer. Two basic
modes of failures are the failure of a node and the failure of a task.
If a node crashes, MapReduce re-runs all the tasks it was
executing on a di�erent node. If a task fails, MapReduce
automatically re-launches it. However, a tricky situation arises
when a node is available but is performing poorly. This causes
tasks scheduled on that node to execute slower than other tasks of
the same job scheduled on other nodes in the cluster. Since a job
finishes execution only when all its tasks have finished execution,
such slow-running tasks, called stragglers, extend the job’s
completion time. This, in turn, leads to increased user costs.

B. Problem Statement
To analyse and review various Straggler mitigation techniques for
distributed parallel processing. To study broad sub-categories of
Straggler mitigation i.e. Proactive and Reactive approaches.

C. Scope
The existing Straggler mitigation approaches work on

minimizing the effect of Stragglers, but not on their complete
elimination. They work to maximize performance at the same time
minimizing resource utilization. In reality, it is difficult to actually
distinguish between temporal and persistent Stragglers. There are
many factors that are needed to be considered for identifying a
node as a Straggler.

II. LITERATURE SURVEY
Today’s most popular computer applications are Internet

services with millions of users. The sheer volume of data that
these services work with has led to interest in parallel processing
on commodity clusters. The leading example is Google, which
uses its map-reduce framework to process 20 Petabytes of data per
day. Other internet services like e-commerce websites and social
networks also cope with enormous volumes of data. These
services generate click stream data from millions of users
everyday which is a potential gold mine for understanding access
patterns and increasing ad revenues. Furthermore, for each user
action a web application generates 1 or 2 orders of magnitude
more data in system logs which are the main resource that
developers and operators have for diagnosing problems in
production. Map-reduce model popularised by Google is very
attractive for ad-hoc parallel processing of arbitrary data. Map-
reduce breaks a computation into small tasks that run in parallel on
multiple machines, and scales easily to very large clusters of
inexpensive commodity computers. A key benefit of map-reduce
is that it automatically handles failures hiding the complexity of
fault tolerance from the programmer. If a node crashes, map-
reduce runs its task on a different machine.

Equally importantly if a node is available but is performing
poorly a condition that is called Straggler, map-reduce runs a
speculative copy of its task on another machine to finish its
computation faster. Without this mechanism of speculative
execution a job would be as slow as the misbehaving task.
Stragglers can arise from many reasons including faulty hardware

Ashwin Bhandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2270-2276

www.ijcsit.com 2270

and misconfiguration. Google has noted that speculative execution
can improve job response times by 44%.

Hadoop’s scheduler starts speculative tasks based on a simple
heuristic comparing each task’s progress to the average progress.
Although this heuristic works well in homogeneous environments
where stragglers are obvious, it can be showed that it can lead to
severe performance degradation when its underlying assumptions
are broken.

In some experiments, as many as 80% of tasks were
speculatively executed. Naıvely, one might expect speculative
execution to be a simple matter of duplicating tasks that are
sufficiently slow. In reality, it is a complex issue for several
reasons. First, speculative tasks are not free – they compete for
certain resources, such as the network, with other running tasks.
Second, choosing the node to run a speculative task on is as
important as choosing the task. Third, in a heterogeneous
environment, it may be difficult to distinguish between nodes that
are slightly slower than the mean and stragglers. Finally, stragglers
should be identified as early as possible to reduce response times.

Existing approaches, whether based on replication or modeling,
aren’t enough to solve this problem. Speculative execution is a
replication-based reactive straggler mitigation technique that
spawns redundant copies of the slow running tasks, hoping a copy
will reach completion before the original. This is the most
prominently used technique today, including production clusters at
Facebook and Microsoft Bing. However, without any additional
information, such reactive techniques can not differentiate
between nodes that are inherently slow and nodes that are
temporarily overloaded. In the latter case, such techniques lead to
unnecessary over-utilization of resources without necessarily
improving the job completion times. Though proactive, Dolly is
still a replication-based approach that focusses only on interactive
jobs and incurs extra resources. Being agnostic to the correlations
between stragglers and nodes’ status, replication-based approaches
are wasteful.

III. REACTIVE STRAGGLER MITIGATION

TECHNIQUES

A. Speculative Execution
 In Hadoop, if a node is available but is performing poorly,
the condition is called a straggler, MapReduce runs a speculative
copy of its task (also called a backup task) on another machine to
finish the computation faster. The goal of speculative execution [1]
is to minimize a jobs response time. A speculative task is run
based on a simple heuristic comparing each tasks progress to the
average progress. Hadoop monitors task progress using a
parameter called Progress Score which has value between 0 and 1.
For a map, the Progress Score is the fraction of input data read.
For a reduce task, the execution is divided into three phases, each
of which accounts for 1/3 of the score. Hadoop looks at the
average Progress Score of each category of tasks (maps and
reduces) to define a threshold for speculative execution. When a
tasks Progress Score is less than the average for its category minus
0.2, and the task has run for at least one minute, it is marked as a
straggler. The speculative task scheduling in Hadoop is based on
multiple assumptions, one is that data center is homogeneous, all
tasks progress at same rate (while some may be local, some
remote, some more compute intensive etc), and all reduce tasks
process same amount of data. So if any of these is invalidated,
their execution can cause competition and may cause Hadoop to
perform poorly. Thus scheduling of speculative tasks which
actually help minimize delay is complex. First because it is
di�cult to select the task for which to run speculative task as it
would be di�cult to distinguish between nodes that are slightly
slower than the mean and stragglers especially in heterogeneous
environment. Then it is useful in decreasing response time only if

stragglers are identified as early as possible, so it needs to
scheduled at right time. Few other points that need to be
considered while deciding and scheduling them would be the
competition of resources (network, cpu etc) created by speculative
(nothing but duplicate) tasks and selecting node to run them.

B. Longest Approximation Time to End Scheduling

Algorithm
 M. Zaharia proposed the Longest Approximate Time to End
(LATE) [5] scheduling algorithm for speculative execution, which
is highly robust to heterogeneity. LATE computes the longest
remaining execution time based on the progress score provided by
default scheduler, then the scheduler chooses the tasks with the
longest remaining time as straggler tasks which will show impact
on the overall job response time. Progress rate of task tj, denoted
by PRj is used to evaluate the remaining execution time of tj using
(1) and TTEj denotes the remaining execution time of task tj is
evaluated using (2), where T is the elapsed time.
 Longest Approximate Time to End (LATE) algorithm is based
on three principles: prioritize tasks to speculate, select fast nodes
to run on, and cap speculative tasks to prevent thrashing. To
realize these principles LATE algorithm uses following
parameters:
SlowNodeThreshold - This is the cap to avoid scheduling on slow
nodes. Scores for all succeeded and in-progress tasks on the node
are compared to this value. SpecultiveCap - It is the cap on
number of speculative tasks that can be running at once.
SlowTaskThreshold - This is a progress rate threshold to
determine if a task is slow enough to be speculated upon.
This prevents needless speculation when only fast tasks are
running.
Progress Rate of a task is given by ProgressScore=ExecutionTime
The time left parameter for a task is estimated based on the
Progress Score provided by
Hadoop, as (1 - ProgressScore)=ProgressRate.

1) LATE Scheduling Algorithm
1. a node N asks for a new task
2. if number of running speculative tasks < SpeculativeCap then
3. if nodes total progress < SlowNodeThreshold then
4. ignore the request else

5. 5. rank currently running tasks that are not currently being
6. speculated by estimated time left

6. repeat
7. select next task T from ranked list
8: if progress rate of T < SlowTaskThreshold then
9: Launch a copy of T on node N
10: exit
11: end if
12: until while ranked list has tasks
14: end if
15: end if

One experiment showed that in a cluster with non-faulty nodes
experiment (without stragglers), LATE finished jobs 27% faster
than Hadoops native scheduler and 31% faster than no speculation.
LATE provides gains in heterogeneous environments even if there
are no faulty nodes. For Sort with stragglers, on average, LATE
finished jobs 58% faster than Hadoops native scheduler and 220%
faster than Hadoop with speculative execution disabled. The
comparison of worst, best and average-case performance of LATE
against Hadoops scheduler and no speculation for runs without
and with stragglers are shown below in Figure 6. Sensitivity
analysis to SpeculativeCap done in test environment showed that
response time drops sharply at SpeculativeCap = 20%, after which
it stays low. And a higher threshold value is undesirable because

Ashwin Bhandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2270-2276

www.ijcsit.com 2271

LATE wastes more time on excess speculation. Experiments for
Sensitivity to SlowTaskThreshold (percentile of progress rate
below which a task must lie to be considered for speculation)
show that small threshold values harmfully limit the number of
speculative tasks, values past 25% all work well. Sensitivity
analysis to SlowNodeThreshold (percentile of speed below which
a node will be considered too slow for LATE to launch speculative
tasks on) show that as long as SlowNodeThreshold is higher than
the fraction of nodes that are extremely slow or faulty, LATE
performs well.

1) Advantages of LATE
 LATE primarily focuses on approximating the remaining
execution time more willingly than just the progress score since it
will speculatively executes only those tasks that will increase
overall job response time instead of slow tasks. LATE takes into
account node heterogeneity when choosing on which node to run a
speculative task.

2) Limitations of LATE
 Even though LATE practices better approach to present backup
tasks, it cannot always finds the actual straggler tasks since it does
not approximate time to end of running tasks correctly. Same as
the MapReduce default scheduler, LATE sets the constant values
of M1, M2, R1, R2, and R3 as 1, 0, 1/3, 1/3 and 1/3. These values
may be altered for different hardware settings and MapReduce
applications in real world execution.

C. Self-Adaptive MapReduce Scheduling Algorithm
Q. Chen proposed Self-Adaptive MapReduce (SAMR) [4]

scheduling algorithm, which computes the progress of the tasks
dynamically and it has implemented the concept of

LATE scheduling algorithm which identifies slow tasks by
approximating execution time of a task. To get more accurate
progress score than LATE, SAMR uses the historical information
recorded on each node in the cluster to tune the weights of map
and reduce stages and also it updates the weights after each task
execution. Therefore, SAMR scheduler performance is enhanced
in heterogeneous environment as compared to MapReduce default
scheduler and LATE scheduler.

1) Advantages of SAMR
 SAMR takes the two stages of a map task into consideration for
the first time and also it categorizes slow nodes into map slow
nodes and reduce slow nodes.

2) Disadvantages of SAMR

Although SAMR uses historical data stored on every node in
the cluster to determine a more accurate estimate of progress score
than LATE, it does not consider that different job types can have
different weights for map and reduce stages. In SAMR, the jobs
with same type can even have different map stage weights and
reduce stage weights when handling the data sets with different
sizes.

D. Enhanced Self-Adaptive MapReduce Scheduling
Algorithm

Enhanced Self-Adaptive MapReduce (ESAMR) [2] scheduling
algorithm is designed to overcome the limitations of the SAMR
algorithm by taking many factors into account that could impact
the stage weights. The novel contribution of ESAMR is to
categorize the historical data stored on each node into K clusters
using K-means cluster identification algorithm to tune parameters
dynamically and finds slow task accurately. In the map phase, if
all the tasks complete their execution then the algorithm will store

job's temporary M1 weight and uses this weight to find the cluster
whose average M1 weight is the closest. These stage weights will
be used to estimate TimeToEnd on that node. In reduce phase, the
algorithm follows a similar process of that map phase. It uses
temporary R1 and R2 weights to determine the cluster with the
closest reduce stage weights. ESAMR detects slow tasks by
utilizing these stage weights to approximate TimeToEnd of the
reduce tasks of that node. After completion of a job, the algorithm
computes the stage weights of map and reduce tasks on each node
in the cluster and keeps these new weights as part of the historical
data.

Lastly, the algorithm uses K-means cluster identification
algorithm to re-categorize the historical data saved on each node
into K clusters. This algorithm improves the performance of
MapReduce scheduling by launching backup tasks for slow tasks
but this algorithm is limited to only K-means algorithm, so
classification can be performed using a better clustering algorithm
for best results which might further improve the MapReduce
performance in the heterogeneous environment.

IV. PROACTIVE STRAGGLER MITIGATION

TECHNIQUES
Existing approaches, whether based on replication or modelling,

aren’t enough to solve this problem. Speculative execution is a
replication-based reactive straggler mitigation technique that
spawns redundant copies of the slow-running tasks, hoping a copy
will reach completion before the original. This is the most
prominently used technique today, including production clusters at
Facebook and Microsoft Bing. However, without any additional
information, such reactive techniques can not differentiate
between nodes that are inherently slow and nodes that are
temporarily overloaded. In the latter case, such techniques lead to
unnecessary over-utilization of resources without necessarily
improving the job completion times.

To avoid such problems, a straggler mitigation
approach should meet the following requirements:

• It should not wait until the tasks are already
 straggling.
• It should not waste resources for mitigating stragglers.

A. Wrangler
 Wrangler [7] is a system that predicts stragglers using an
interpretable linear modeling technique. Wrangler prevents
wastage of resources by removing the need for replicating tasks.
Wrangler introduces a notion of a confidence measure with these
predictions to overcome the modeling error problems; this
confidence measure is then exploited to achieve a reliable task
scheduling. A prototype implementation of Wrangler demonstrates
up to 61% improvement in overall job completion times while
reducing the resource consumption by up to 55% for production-
level workloads using a 50 node EC2 cluster.

1) Wrangler Architecture

Figure 4.1: Architecture of Wrangler.

Model
Builder

Model-informed
Scheduler

Utilization
Counters

Master

Worker
Nodes

Scheduling
Decisions

Confident
enough?

Yes

Ashwin Bhandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2270-2276

www.ijcsit.com 2272

Figure 4.1 shows Wrangler’s system architecture, which extends
Hadoop. Job scheduling in Hadoop is handled by a master, which
controls the workers. The master assigns tasks to the worker
nodes in response to the heartbeat message sent by them every
few seconds. The assignments depend upon the number of
available slots as well as locality. Wrangler has two basic
components.

1. Model Builder: Using the job logs and snapshot of resource
usage counters collected regularly from the worker nodes using a
Ganglia-based node-monitor and build a model per node. These
models predict if a task will straggle given its execution
environment; they also attach a confidence measure to each of
their predictions.
2. Model-informed Scheduler: Using the predictions from the
models built earlier, a model-informed scheduler then selectively
delays the start of task execution if that node is predicted to create
a straggler. A task is delayed only if the confidence in the
corresponding prediction exceeds the minimum required
confidence. This avoids overloading of nodes, thus reducing their
chances of creating stragglers.

2) Linear Model for Predicting Stragglers

(a) Learning phase (b) Prediction phase Fig 4.2

Finding what actually causes stragglers is challenging due to
complex task-to-node and task to-task interactions. Linear
modeling techniques from the machine learning domain are
appropriate for probabilistic modeling of a node’s behaviour,
which can be represented through the various resource usage
counters. These techniques adapt to dynamically changing
resource usage patterns on a node. This alleviates the pains of
manual diagnosis of the source of individual straggler appearance.
It is necessary to learn the behaviour of each node individually to
be robust to heterogeneity in today’s clusters. As shown in Figure
4.2(a), during the learning phase, these techniques learn weights
on the features using labelled data that represents the ground truth.
In this context this data is the node’s resource usage counters at
the time of submission of a task and a label (isStraggler),
indicating whether it was a straggler. Using these weights and the
node’s resource usage counters the model calculates a score for
predicting if it will turn out to be a straggler. This prediction phase
is depicted in Figure 4.2(b).

3) Support Vector Machine
 SVM [8] is a statistical tool that learns a linear function
separating a given set of vectors (e.g., node’s resource usage
counters) into two classes (e.g., straggler class and non-straggler
class). This linear function is called the separating hyperplane;
each of the two half spaces defined by this hyperplane represents a
class. In the model building phase, this hyperplane is computed
such that it separates the vectors of node’s resource usage counters
belonging to one class (stragglers) from those of the other class

(non-stragglers) with maximum distance (called margin) between
them. Later, a new observed resource usage vector (i.e. a test
vector) can be evaluated to see which side of the separating
hyperplane it lies, along with a score to quantify the confidence in
classification based on the distance from the hyperplane.

4) Features
The node-level features spanning multiple broad categories are as
follows:
1. CPU utilization: CPU idle time, system and user time and

speed of the CPU, etc.
2. Network utilization: Number of bytes sent and received,

statistics of remote read and write, statistics of RPCs, etc.
3. Disk utilization: The local read and write statistics from the

data nodes, amount of free space, etc.
4. Memory utilization: Amount of virtual, physical memory

available, amount of buffer space, cache space, shared
memory space available, etc.

5. System-level features: Number of threads in different states
(waiting, running, terminated, blocked, etc.), memory
statistics at the system level.

5) Confidence Measures
 Simply predicting a task to be a ‘straggler’ or a ‘non-straggler’
is not robust to modeling errors. To ensure reliable predictions, the
notion of confidence measure along with the prediction of these
linear models is introduced. Confidence measure to help decide if
our predictions are accurate enough for preventing stragglers by
influencing the scheduling decisions is needed. The farther a node
counter vector is from the separating hyperplane, higher are the
chances of it belonging to the predicted class. To obtain a
probability estimate of the prediction being correct, the distance
from the separating hyperplane is converted to a number in the
range [0, 1]. These probabilities are obtained by fitting logistic
regression models to this distance.

6) Summary

 Wrangler proactively avoids stragglers to achieve faster job
completions while using fewer resources. Rather than allowing
tasks to execute and detecting them as stragglers when they run
slow, Wrangler predicts stragglers before they are launched.
Wrangler’s notion of a confidence measure allows it to overcome
modeling errors. Further, Wrangler leverages this confidence
measure to achieve a reliable task scheduling; thus eliminating
the need for replicating them. Prototype on Hadoop using an EC2
cluster of 50 nodes showed that Wrangler speeds up the 99th
percentile job execution times by up to 61% and consumes up to
55% lesser resources as compared to the speculative execution for
production workloads at Facebook and Cloudera’s customers.
Although it serves as a straggler avoidance approach on its own,
Wrangler can also be used in conjunction with existing mitigation
approaches. In the future, we aim to speed up the training process
by (1) reducing the time spent for capturing training data per node
in a cluster and (2) training straggler prediction models across
workloads.

B. Multi-task Learning

Proactive straggler mitigation techniques attempt to schedule
tasks in a way that limits the effect of stragglers by modeling
straggler behaviour. Recently, Wrangler showed that
incorporating predictive models of straggler behaviour in the
scheduler can lead to large improvements in job completion times.
 However, to address heterogeneity in the nodes and changing
workload patterns, proactive model based approaches have
previously modelled each workload and node independently.

Learning

Linear Function/
Feature Weights

Features, < IsStraggler > feature
1

feature
2

feature
 3

feature
N

.

.

.

w
1

w

2

w
3

w
N

.

.

.

Σ

Straggler

Non

Straggler

Ashwin Bhandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2270-2276

www.ijcsit.com 2273

Independent models pose two critical challenges: (1) each new
node and workload requires new training data which can take
hours to collect, delaying the application of model based
scheduling, and (2) clusters with many nodes may have only
limited data for a given workload on each node leading to lower
quality models.
 These shortcomings can be addressed if each classifier is able
to leverage information gleaned at other nodes and from other
workloads. For instance, when there is not enough data at a node
for a workload, we can gain from the data collected at that node
while it was executing other workloads, or from other nodes
running the same workload. Such information sharing falls in the
ambit of multi-task learning (MTL) [3], where the learner is
embedded in an environment of related tasks, and the learner’s
aim is to leverage correlations between the tasks to improve
performance of all tasks.
In this work, explicit knowledge about the dependencies between
tasks to improve the performance of MTL is exploited. In
particular, classifiers by workload and by node is grouped. Using
our formulation to predict stragglers allows us to reduce job
completion times by up to 59% over Wrangler. This large
reduction arises from a 7% increase in prediction accuracy.
Further, equal or better accuracy can be obtained by using a sixth
of the training data, thus bringing the training time down from 4
hours to about 40 minutes. In addition, our formulation reduces
the number of parameters by grouping parameters into node-
dependent and workload-dependent factors. It is seen that, in the
event of a particular task having insufficient data, parameter
grouping can lead to significant gains over a naive MTL
formulation.
 Finally, while it can be shown experiments on straggler
avoidance, our learning formulation is general and can be applied
to other systems that train node or workload dependent classifiers.
For instance, Throughput Scheduler uses such classifiers to allot
resources to tasks, and can benefit from such multitask reasoning.

1) Need for Multi-task Learning
 Our proposal is to leverage the correlations between the
classifiers to reduce data collection time. Concretely, a task
executing on a node will be a straggler because of a combination
of factors. Some of these factors involve the properties of the
node where the task is executing (for instance, the node may be
memory-constrained) and some others involve particular
requirements that the tasks might have in terms of resources (for
instance, the task may require a lot of memory). These are
workload-related factors. When collecting data for a new
workload executing on a given node, one must be able to use
information about the workload collected while it executed on
other nodes, and information about the node collected while it
executed other workloads.
 This kind of sharing of information is precisely the motivation
for the machine learning paradigm known as multitask learning
(MTL). Each task has its own training data set, although typically
all training points of all tasks live in the same feature space. The
tasks are related to each other, and the goal of MTL is to leverage
this relationship to improve performance or generalization of all
the tasks.

2) Summary
In this work, it can be shown the utility of multitask learning in
solving the real-world problem of avoiding stragglers in
distributed data processing. Our novel MTL formulation captures
the structure of our tasks and reduces job completion times by up
to 59% over prior work. This reduction comes from a 7 point
increase in prediction accuracy. Our formulation can achieve
better accuracy with only a sixth of the training data and can
generalize better than other MTL approaches for tasks with little

or no data. Finally, although use of straggler avoidance as the
motivation, our formulation is more generally applicable,
especially for other prediction problems in distributed computing
frameworks, such as resource allocation.

C. Dolly
Small jobs that are typically run for interactive data analyses in
data centers continue to be plagued by disproportionately long-
running tasks called stragglers. In the production clusters at
Facebook and Microsoft Bing, even after applying state-of-the-art
straggler mitigation techniques, these latency sensitive jobs have
stragglers that are on average 8 times slower than the median task
in that job. Such stragglers increase the average job duration
by47%. This is because current mitigation techniques all involve
an element of waiting and speculation. Cloning of small jobs only
marginally increases utilization because workloads show that
while the majority of jobs are small, they only consume a small
fraction of the resources. The main challenge of cloning is,
however, that extra clones can cause contention for intermediate
data. A technique called as delay assignment, which efficiently
avoids such contention. Evaluation of our system, Dolly [6] ,
using production workloads shows that the small jobs speedup by
34% to 46% after state-of-the-art mitigation techniques have been
applied, using just 5% extra resources for cloning.

1) Explanation
 Achieving low latencies for these small interactive jobs is of
prime concern to data center operators. The problem of stragglers
has received considerable attention already, with a slew of
straggler mitigation techniques being developed. These
techniques can be broadly divided into two classes: black-listing
and speculative execution. However, our traces show that even
after applying state-of-the-art blacklisting and speculative
execution techniques, the small jobs have stragglers that, on
average, run eight times slower than that job’s median task,
slowing them by 47% on average. Thus, stragglers remain a
problem for small jobs.
 Blacklisting identifies machines in bad health (e.g., due to
faulty disks) and avoids scheduling tasks on them. The Facebook
and Bing clusters, in fact, blacklist roughly 10% of their
machines. However, stragglers occur on the non-blacklisted
machines, often due to intrinsically complex reasons like IO
contentions, interference by periodic maintenance operations and
background services, and hardware behaviours. For this reason,
speculative execution was explored to deal with stragglers.
Speculative execution waits to observe the progress of the tasks
of a job and launches duplicates of those tasks that are slower.
However, speculative execution techniques have a fundamental
limitation when dealing with small jobs. Any meaningful
comparison requires waiting to collect statistically significant
samples of task performance. Such waiting limits their agility
when dealing with stragglers in small jobs as they often start all
their tasks simultaneously. The problem is exacerbated when
some tasks start straggling when they are well into their execution.
Spawning a speculative copy at that point might be too late to
help. This technique is both general and robust as it eschews
waiting, speculating, and finding complex correlations. Such
proactive cloning will significantly improve the agility of
straggler mitigation when dealing with small interactive jobs.
Cloning comes with two main challenges. The first challenge is
that extra clones might use a prohibitive amount of extra
resources. However, our analysis of production traces shows a
strong heavy-tail distribution of job sizes: the smallest 90% of
jobs consume as less as 6% of the resources.
 The second challenge is the potential contention that extra
clones create on intermediate data, possibly hurting job
performance. Efficient cloning requires that we clone each task

Ashwin Bhandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2270-2276

www.ijcsit.com 2274

and use the output from the clone of the task that finishes first.
This, however, can cause contention for the intermediate data
passed between tasks of the different phases (e.g., map, reduce,
join) of the job; frameworks often compose jobs as a graph of
phases where tasks of downstream phases (e.g., reduce) read the
output of tasks of upstream phases (e.g., map). If all downstream
clones read from the upstream clone that finishes first, they
contend for the IO bandwidth. An alternate that avoids this
contention is making each downstream clone read exclusively
from only a single upstream clone. But this staggers the start
times of the downstream clones.
Our solution to the contention problem, delay assignment, is a
hybrid solution that aims to get the best of both the above pure
approaches. It is based on the intuition that most clones, except
few stragglers, finish nearly simultaneously. Using a cost-benefit
analysis that captures this small variation among the clones, it
checks to see if clones can obtain exclusive copies before
assigning downstream clones to the available copies of upstream
outputs. The cost-benefit analysis is generic to account for
different communication patterns between the phases, including
all-to-all (MapReduce), many-to-one (Dryad), and one-to-one
(Dryad and Spark).
 Dolly, a system that performs cloning to mitigate the effect of
stragglers while operating within a resource budget. Evaluation

on a 150 node cluster using production workloads from Facebook
and Bing shows that Dolly improves the average completion time
of the small jobs by 34% to 46%, respectively, with LATE and
Mantri as baselines. These improvements come with a resource
budget of merely 5% due to the aforementioned heavy-tail
distribution of job-sizes. By picking the fastest clone of every
task, Dolly effectively reduces the slowest task from running 8×
slower on average to 1.06×, thus, effectively eliminating all
stragglers.

2) Does Dolly mitigate stragglers?
Unless specified otherwise, the cloning budget β is 5% and
utilization threshold τ is 80%. Dolly improves the average
completion time of jobs by 42% compared to LATE and 40%
compared to Mantri, in the Facebook workload. The
corresponding improvements are 27% and 23% in the Bing
workload.
Small jobs (bin-1) benefit the most, improving by 46% and 37%
compared to LATE and 44% and 34% compared to Mantri, in the
Facebook and Bing workloads. This is because of the power-law
in job sizes and the policy of admission control.

V. ANALYSIS

TABLE I ANALYSIS OF DIFFERENT STRAGGLER HANDLING TECHNIQUES

VI. CONCLUSION AND FUTURE SCOPE

A. Conclusion
In the course of this study we have reviewed and analysed various
straggler mitigation approaches. We have studied the broad sub-
categories of straggler mitigation i.e. proactive and reactive
methods. The proactive techniques proving to have better
performance along with lower disk and memory utilization. We
have compared LATE, SAMR, ESAMR techniques of Speculative
Execution, Dolly technique of Cloning, Proactive Wrangler
technique along with Machine learning Approach. Wrangler
technique with Machine learning approach is the best amongst the
other approaches compared. We have presented a brief analysis of
the different mitigation techniques based on various performance
parameters.

B. Future Scope
The existing techniques are meant for straggler mitigation or for
reducing the impact of stragglers. In future we can have

techniques for elimination of stragglers altogether without
resource blacklisting and optimal use of resources. Although being
the best of the existing straggler mitigation approaches Proactive
Machine learning Wrangler technique has its own shortcomings
too. For datasets having a huge variance in the numbers obtained
across multiple nodes this technique is not much effective.
Thus we could try to generalise the technique for all kinds of
datasets eventually improving it's confidence measure too.

REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation-
Volume6,OSDI’04,pages10–10,Berkeley, CA, USA, 2004.
USENIX Association.

[2] Ganesh Ananthanarayanan, Srikanth Kandula, Albert
Greenberg,IonStoica,YiLu,BikasSaha,andEdwardHarris. Reining in
the outliers in map-reducec lusters using mantri.
InProceedingsofthe9thUSENIXConferenceonOperatingSystems
Design and Implementation, OSDI’10, pages 1–16, Berkeley, CA,
USA, 2010. USENIX Association.

Name Method

Factors

Memory
Utilisation

Replication
Disk

Utilisation
Straggler
Detection

Data
Set

Delay Speed Reliability
Confidence

Measure

LATE Reactive Medium Medium No Yes No High Low Medium Average

SAMR Reactive Medium Medium Medium Yes Yes Low Medium High Good

ESAMR Reactive Medium Medium Medium Yes Yes Low Medium High Good

Dolly
Proactive
(Cloning)

Highest High No No No No
Good-
small
tasks

High --

Wrangler Proactive High No High Yes Yes High Good Highest Good

Ashwin Bhandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2270-2276

www.ijcsit.com 2275

[3] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy H.
Katz, and Ion Stoica. Improving mapreduce performance in
heterogeneous environments. In OSDI, 2008.

[4] Q. Chen, D. Zhang, M. Guo, Q. Deng, and S. Guo, “SAMR: A self
adaptive mapreduce scheduling algorithm in heterogeneous
environment,” in Proceedings of the 10th IEEE International
Conference on Computer and Information Technology, CIT ’10,
(Washington, DC, USA), pp. 2736–2743, IEEE Computer Society,
2010

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M.J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster
Computing. In USENIX NSDI, 2012.

[6] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion
Stoica. E�ective straggler mitigation: Attack of the clones. In NSDI,
2013.

[7] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz.
Wrangler: Predictable and faster jobs using fewer resources. In
Proceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, pages 26:1–26:14, New York, NY, USA, 2014. ACM.

[8] R. Nanduri, N. Maheshwari, A. Reddyraja, and V. Varma, “Job
awarescheduling algorithm for mapreduce framework,” in
Proceedings of the 3rd International Conference on Cloud
Computing Technology and Science, CLOUDCOM ’11,
(Washington, DC, USA), pp. 724–729, IEEE Computer Society,
2011.

Ashwin Bhandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2270-2276

www.ijcsit.com 2276

