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Abstract— Distributed processing frameworks split a data
intensive computation job into multiple smaller tasks, which 
are then executed in parallel on commodity clusters to achieve 
faster job completion. A natural consequence of such a parallel 
execution model is that slow running tasks, commonly called 
stragglers potentially delay overall job completion. Straggler 
tasks continue to be a major hurdle in achieving faster 
completion of data intensive applications running on modern 
data-processing frameworks.  Such stragglers increase the 
average job duration by 47% in data clusters of Facebook and 
Bing even after these companies using state of the art straggler 
mitigation techniques. This is because current mitigation 
techniques all involve an element of waiting and speculation. 
Existing straggler mitigation techniques are inefficient due to 
their reactive and replicative nature – they rely on a wait-
speculate-execute mechanism, thus leading to delayed 
straggler detection and inefficient resource utilization. Hence a 
full cloning of small jobs, avoiding waiting and speculation 
altogether is proposed in a system called as Dolly. Dolly utilizes 
extra resources due to replication. Therefore Wrangler, a 
system that proactively avoids situations that cause stragglers 
was presented which automatically learns to predict such 
situations using a statistical learning technique based on 
cluster resource utilization counters. Also predictors for 
similar nodes or workloads are likely to be similar and can 
share information, suggesting a multi-task learning (MTL) 
based approach. Thus we have reviewed some of the 
approaches of scheduling algorithms like LATE, SAMR and 
ESAMR, Dolly and Wrangler. Thus we have reviewed some of 
the approaches of scheduling algorithms like LATE, SAMR 
and ESAMR, Dolly and Wrangler. 

Keywords—Straggler, Speculative Execution, LATE, SAMR, 
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I. INTRODUCTION
       Today, data is getting generated at an unprecedented scale due 
to popular Internet-based computer applications that serve millions 
of users, such as e-commerce websites and social networks. The 
rate at which this data is growing has rendered parallel processing 
on commodity compute clusters an inevitable and an attractive 
option. 

A. Motivation
Google originally proposed its MapReduce framework [1]

allowing them to process enormous amounts of data. MapReduce 
is highly scalable to large clusters of inexpensive commodity 
computers. Hadoop, a popular open source implementation of 
MapReduce, has been widely adopted by industries of various 
sizes. For accelerating a job’s completion time, MapReduce 
divides a data intensive computation job into multiple smaller 
tasks. These tasks are executed in parallel on multiple machines 
(nodes) in a compute cluster. A job finishes when all its tasks have 
finished execution. A key benefit of such distributed parallel 

processing frameworks is that they automatically handle failures, 
without needing extra e�orts from the programmer. Two basic 
modes of failures are the failure of a node and the failure of a task. 
If a node crashes, MapReduce re-runs all the tasks it was 
executing on a di�erent node. If a task fails, MapReduce 
automatically re-launches it. However, a tricky situation arises 
when a node is available but is performing poorly. This causes 
tasks scheduled on that node to execute slower than other tasks of 
the same job scheduled on other nodes in the cluster. Since a job 
finishes execution only when all its tasks have finished execution, 
such slow-running tasks, called stragglers, extend the job’s 
completion time. This, in turn, leads to increased user costs. 

B. Problem Statement
To analyse and review various Straggler mitigation techniques for 
distributed parallel processing. To study broad sub-categories of 
Straggler mitigation i.e. Proactive and Reactive approaches. 

C. Scope
The existing Straggler mitigation approaches work on

minimizing the effect of Stragglers, but not on their complete 
elimination. They work to maximize performance at the same time 
minimizing resource utilization. In reality, it is difficult to actually 
distinguish between temporal and persistent Stragglers. There are 
many factors that are needed to be considered for identifying a 
node as a Straggler. 

II. LITERATURE SURVEY
Today’s most popular computer applications are Internet 

services with millions of users. The sheer volume of data that 
these services work with has led to interest in parallel processing 
on commodity clusters. The leading example is Google, which 
uses its map-reduce framework to process 20 Petabytes of data per 
day. Other internet services like e-commerce websites and social 
networks also cope with enormous volumes of data. These 
services generate click stream data from millions of users 
everyday which is a potential gold mine for understanding access 
patterns and increasing ad revenues. Furthermore, for each user 
action a web application generates 1 or 2 orders of magnitude 
more data in system logs which are the main resource that 
developers and operators have for diagnosing problems in 
production. Map-reduce model popularised by Google is very 
attractive for ad-hoc parallel processing of arbitrary data. Map-
reduce breaks a computation into small tasks that run in parallel on 
multiple machines, and scales easily to very large clusters of 
inexpensive commodity computers. A key benefit of map-reduce 
is that it automatically handles failures hiding the complexity of 
fault tolerance from the programmer. If a node crashes, map-
reduce runs its task on a different machine. 

Equally importantly if a node is available but is performing 
poorly a condition that is called Straggler, map-reduce runs a 
speculative copy of its task on another machine to finish its 
computation faster. Without this mechanism of speculative 
execution a job would be as slow as the misbehaving task. 
Stragglers can arise from many reasons including faulty hardware 

Ashwin Bhandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (5) , 2016,2270-2276

www.ijcsit.com 2270



and misconfiguration. Google has noted that speculative execution 
can improve job response times by 44%. 

Hadoop’s scheduler starts speculative tasks based on a simple 
heuristic comparing each task’s progress to the average progress. 
Although this heuristic works well in homogeneous environments 
where stragglers are obvious, it can be showed that it can lead to 
severe performance degradation when its underlying assumptions 
are broken. 

In some experiments, as many as 80% of tasks were 
speculatively executed. Naıvely, one might expect speculative 
execution to be a simple matter of duplicating tasks that are 
sufficiently slow. In reality, it is a complex issue for several 
reasons. First, speculative tasks are not free – they compete for 
certain resources, such as the network, with other running tasks. 
Second, choosing the node to run a speculative task on is as 
important as choosing the task. Third, in a heterogeneous 
environment, it may be difficult to distinguish between nodes that 
are slightly slower than the mean and stragglers. Finally, stragglers 
should be identified as early as possible to reduce response times. 

Existing approaches, whether based on replication or modeling, 
aren’t enough to solve this problem. Speculative execution is a 
replication-based reactive straggler mitigation technique that 
spawns redundant copies of the slow running tasks, hoping a copy 
will reach completion before the original. This is the most 
prominently used technique today, including production clusters at 
Facebook and Microsoft Bing. However, without any additional 
information, such reactive techniques can not differentiate 
between nodes that are inherently slow and nodes that are 
temporarily overloaded. In the latter case, such techniques lead to 
unnecessary over-utilization of resources without necessarily 
improving the job completion times. Though proactive, Dolly is 
still a replication-based approach that focusses only on interactive 
jobs and incurs extra resources. Being agnostic to the correlations 
between stragglers and nodes’ status, replication-based approaches 
are wasteful. 

 
III. REACTIVE STRAGGLER MITIGATION 

TECHNIQUES 

A. Speculative Execution 
         In Hadoop, if a node is available but is performing poorly, 
the condition is called a straggler, MapReduce runs a speculative 
copy of its task (also called a backup task) on another machine to 
finish the computation faster. The goal of speculative execution [1] 
is to minimize a jobs response time. A speculative task is run 
based on a simple heuristic comparing each tasks progress to the 
average progress. Hadoop monitors task progress using a 
parameter called Progress Score which has value between 0 and 1. 
For a map, the Progress Score is the fraction of input data read. 
For a reduce task, the execution is divided into three phases, each 
of which accounts for 1/3 of the score. Hadoop looks at the 
average Progress Score of each category of tasks (maps and 
reduces) to define a threshold for speculative execution. When a 
tasks Progress Score is less than the average for its category minus 
0.2, and the task has run for at least one minute, it is marked as a 
straggler. The speculative task scheduling in Hadoop is based on 
multiple assumptions, one is that data center is homogeneous, all 
tasks progress at same rate (while some may be local, some 
remote, some more compute intensive etc), and all reduce tasks 
process same amount of data. So if any of these is invalidated, 
their execution can cause competition and may cause Hadoop to 
perform poorly. Thus scheduling of speculative tasks which 
actually help minimize delay is complex. First because it is 
di�cult to select the task for which to run speculative task as it 
would be di�cult to distinguish between nodes that are slightly 
slower than the mean and stragglers especially in heterogeneous 
environment. Then it is useful in decreasing response time only if 

stragglers are identified as early as possible, so it needs to 
scheduled at right time. Few other points that need to be 
considered while deciding and scheduling them would be the 
competition of resources (network, cpu etc) created by speculative 
(nothing but duplicate) tasks and selecting node to run them. 
 
B. Longest Approximation Time to End Scheduling 

Algorithm 
    M. Zaharia proposed the Longest Approximate Time to End 
(LATE) [5] scheduling algorithm for speculative execution, which 
is highly robust to heterogeneity. LATE computes the longest 
remaining execution time based on the progress score provided by 
default scheduler, then the scheduler chooses the tasks with the 
longest remaining time as straggler tasks which will show impact 
on the overall job response time. Progress rate of task tj, denoted 
by PRj is used to evaluate the remaining execution time of tj using 
(1) and TTEj denotes the remaining execution time of task tj is 
evaluated using (2), where T is the elapsed time. 
    Longest Approximate Time to End (LATE) algorithm is based 
on three principles: prioritize tasks to speculate, select fast nodes 
to run on, and cap speculative tasks to prevent thrashing. To 
realize these principles LATE algorithm uses following 
parameters: 
SlowNodeThreshold - This is the cap to avoid scheduling on slow 
nodes. Scores for all succeeded and in-progress tasks on the node 
are compared to this value. SpecultiveCap - It is the cap on 
number of speculative tasks that can be running at once. 
SlowTaskThreshold  - This is a progress rate threshold to 
determine if a task is slow enough to be speculated upon. 
This prevents needless speculation when only fast tasks are 
running. 
Progress Rate of a task is given by ProgressScore=ExecutionTime 
The time left parameter for a task is estimated based on the 
Progress Score provided by 
Hadoop, as (1 - ProgressScore)=ProgressRate. 
 
1)   LATE Scheduling Algorithm  
1. a node N asks for a new task 
2. if number of running speculative tasks < SpeculativeCap then 
3. if nodes total progress < SlowNodeThreshold then 
4. ignore the request   else 

5. 5.     rank currently running tasks that are not currently being 
6.         speculated by estimated time left 

6.     repeat 
7.     select next task T from ranked list 
8:     if progress rate of T < SlowTaskThreshold then 
9:     Launch a copy of T on node N 
10:   exit 
11:   end if 
12:   until while ranked list has tasks 
14:   end if 
15:   end if 
 
One experiment showed that in a cluster with non-faulty nodes 
experiment (without stragglers), LATE finished jobs 27% faster 
than Hadoops native scheduler and 31% faster than no speculation. 
LATE provides gains in heterogeneous environments even if there 
are no faulty nodes. For Sort with stragglers, on average, LATE 
finished jobs 58% faster than Hadoops native scheduler and 220% 
faster than Hadoop with speculative execution disabled. The 
comparison of worst, best and average-case performance of LATE 
against Hadoops scheduler and no speculation for runs without 
and with stragglers are shown below in Figure 6. Sensitivity 
analysis to SpeculativeCap done in test environment showed that 
response time drops sharply at SpeculativeCap = 20%, after which 
it stays low. And a higher threshold value is undesirable because 
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LATE wastes more time on excess speculation. Experiments for 
Sensitivity to SlowTaskThreshold (percentile of progress rate 
below which a task must lie to be considered for speculation) 
show that small threshold values harmfully limit the number of 
speculative tasks, values past 25% all work well. Sensitivity 
analysis to SlowNodeThreshold (percentile of speed below which 
a node will be considered too slow for LATE to launch speculative 
tasks on) show that as long as SlowNodeThreshold is higher than 
the fraction of nodes that are extremely slow or faulty, LATE 
performs well. 
 
1) Advantages of LATE 
    LATE primarily focuses on approximating the remaining 
execution time more willingly than just the progress score since it 
will speculatively executes only those tasks that will increase 
overall job response time instead of slow tasks. LATE takes into 
account node heterogeneity when choosing on which node to run a 
speculative task. 
 
2) Limitations of LATE 
    Even though LATE practices better approach to present backup 
tasks, it cannot always finds the actual straggler tasks since it does 
not approximate time to end of running tasks correctly. Same as 
the MapReduce default scheduler, LATE sets the constant values 
of M1, M2, R1, R2, and R3 as 1, 0, 1/3, 1/3 and 1/3. These values 
may be altered for different hardware settings and MapReduce 
applications in real world execution. 
 

C. Self-Adaptive MapReduce Scheduling Algorithm 
Q. Chen proposed Self-Adaptive MapReduce (SAMR) [4] 

scheduling algorithm, which computes the progress of the tasks 
dynamically and it has implemented the concept of 

LATE scheduling algorithm which identifies slow tasks by 
approximating execution time of a task. To get more accurate 
progress score than LATE, SAMR uses the historical information 
recorded on each node in the cluster to tune the weights of map 
and reduce stages and also it updates the weights after each task 
execution. Therefore, SAMR scheduler performance is enhanced 
in heterogeneous environment as compared to MapReduce default 
scheduler and LATE scheduler. 

 
1) Advantages of SAMR 
    SAMR takes the two stages of a map task into consideration for 
the first time and also it categorizes slow nodes into map slow 
nodes and reduce slow nodes. 
 
2) Disadvantages of SAMR 

Although SAMR uses historical data stored on every node in 
the cluster to determine a more accurate estimate of progress score 
than LATE, it does not consider that different job types can have 
different weights for map and reduce stages. In SAMR, the jobs 
with same type can even have different map stage weights and 
reduce stage weights when handling the data sets with different 
sizes. 

D. Enhanced Self-Adaptive MapReduce Scheduling 
Algorithm 

Enhanced Self-Adaptive MapReduce (ESAMR) [2] scheduling 
algorithm is designed to overcome the limitations of the SAMR 
algorithm by taking many factors into account that could impact 
the stage weights. The novel contribution of ESAMR is to 
categorize the historical data stored on each node into K clusters 
using K-means cluster identification algorithm to tune parameters 
dynamically and finds slow task accurately. In the map phase, if 
all the tasks complete their execution then the algorithm will store 

job's temporary M1 weight and uses this weight to find the cluster 
whose average M1 weight is the closest. These stage weights will 
be used to estimate TimeToEnd on that node. In reduce phase, the 
algorithm follows a similar process of that map phase. It uses 
temporary R1 and R2 weights to determine the cluster with the 
closest reduce stage weights. ESAMR detects slow tasks by 
utilizing these stage weights to approximate TimeToEnd of the 
reduce tasks of that node. After completion of a job, the algorithm 
computes the stage weights of map and reduce tasks on each node 
in the cluster and keeps these new weights as part of the historical 
data. 

Lastly, the algorithm uses K-means cluster identification 
algorithm to re-categorize the historical data saved on each node 
into K clusters. This algorithm improves the performance of 
MapReduce scheduling by launching backup tasks for slow tasks 
but this algorithm is limited to only K-means algorithm, so 
classification can be performed using a better clustering algorithm 
for best results which might further improve the MapReduce 
performance in the heterogeneous environment. 

 
IV.   PROACTIVE STRAGGLER MITIGATION 

TECHNIQUES 
Existing approaches, whether based on replication or modelling, 

aren’t enough to solve this problem. Speculative execution is a 
replication-based reactive straggler mitigation technique that 
spawns redundant copies of the slow-running tasks, hoping a copy 
will reach completion before the original. This is the most 
prominently used technique today, including production clusters at 
Facebook and Microsoft Bing. However, without any additional 
information, such reactive techniques can not differentiate 
between nodes that are inherently slow and nodes that are 
temporarily overloaded. In the latter case, such techniques lead to 
unnecessary over-utilization of resources without necessarily 
improving the job completion times. 

To avoid such problems, a straggler mitigation 
approach should meet the following requirements: 

• It should not wait until the tasks are already  
   straggling. 
•  It should not waste resources for mitigating stragglers. 
 

A. Wrangler 
    Wrangler [7] is a system that predicts stragglers using an 
interpretable linear modeling technique. Wrangler prevents 
wastage of resources by removing the need for replicating tasks. 
Wrangler introduces a notion of a confidence measure with these 
predictions to overcome the modeling error problems; this 
confidence measure is then exploited to achieve a reliable task 
scheduling. A prototype implementation of Wrangler demonstrates 
up to 61% improvement in overall job completion times while 
reducing the resource consumption by up to 55% for production-
level workloads using a 50 node EC2 cluster. 
 
1)   Wrangler Architecture 

 

 

Figure 4.1: Architecture of Wrangler. 
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Figure 4.1 shows Wrangler’s system architecture, which extends 
Hadoop. Job scheduling in Hadoop is handled by a master, which 
controls the workers. The master assigns tasks to the worker 
nodes in response to the heartbeat message sent by them every 
few seconds. The assignments depend upon the number of 
available slots as well as locality. Wrangler has two basic 
components. 
 
1.  Model Builder: Using the job logs and snapshot of resource 
usage counters collected regularly from the worker nodes using a 
Ganglia-based node-monitor and build a model per node. These 
models predict if a task will straggle given its execution 
environment; they also attach a confidence measure to each of 
their predictions. 
2. Model-informed Scheduler: Using the predictions from the 
models built earlier, a model-informed scheduler then selectively 
delays the start of task execution if that node is predicted to create 
a straggler. A task is delayed only if the confidence in the 
corresponding prediction exceeds the minimum required 
confidence. This avoids overloading of nodes, thus reducing their 
chances of creating stragglers. 
 
2)   Linear Model for Predicting Stragglers 
 

 
(a) Learning phase          (b) Prediction phase   Fig 4.2 

Finding what actually causes stragglers is challenging due to 
complex task-to-node and task to-task interactions. Linear 
modeling techniques from the machine learning domain are 
appropriate for probabilistic modeling of a node’s behaviour, 
which can be represented through the various resource usage 
counters. These techniques adapt to dynamically changing 
resource usage patterns on a node. This alleviates the pains of 
manual diagnosis of the source of individual straggler appearance. 
It is necessary to learn the behaviour of each node individually to 
be robust to heterogeneity in today’s clusters. As shown in Figure 
4.2(a), during the learning phase, these techniques learn weights 
on the features using labelled data that represents the ground truth. 
In this context this data is the node’s resource usage counters at 
the time of submission of a task and a label (isStraggler), 
indicating whether it was a straggler. Using these weights and the 
node’s resource usage counters the model calculates a score for 
predicting if it will turn out to be a straggler. This prediction phase 
is depicted in Figure 4.2(b). 
 
3) Support Vector Machine 
    SVM [8] is a statistical tool that learns a linear function 
separating a given set of vectors (e.g., node’s resource usage 
counters) into two classes (e.g., straggler class and non-straggler 
class). This linear function is called the separating hyperplane; 
each of the two half spaces defined by this hyperplane represents a 
class. In the model building phase, this hyperplane is computed 
such that it separates the vectors of node’s resource usage counters 
belonging to one class (stragglers) from those of the other class 

(non-stragglers) with maximum distance (called margin) between 
them. Later, a new observed resource usage vector (i.e. a test 
vector) can be evaluated to see which side of the separating 
hyperplane it lies, along with a score to quantify the confidence in 
classification based on the distance from the hyperplane. 
 
4) Features 
The node-level features spanning multiple broad categories are as 
follows: 
1.  CPU utilization: CPU idle time, system and user time and 

speed of the CPU, etc. 
2.  Network utilization: Number of bytes sent and received, 

statistics  of remote read and write, statistics of RPCs, etc. 
3.  Disk utilization: The local read and write statistics from the 

data  nodes, amount of free space, etc. 
4.  Memory utilization: Amount of virtual, physical memory      

available, amount of buffer space, cache space, shared 
memory  space  available, etc. 

5.  System-level features: Number of threads in different states      
(waiting, running, terminated, blocked, etc.), memory 
statistics at      the system level. 

 
5) Confidence Measures 
    Simply predicting a task to be a ‘straggler’ or a ‘non-straggler’ 
is not robust to modeling errors. To ensure reliable predictions, the 
notion of confidence measure along with the prediction of these 
linear models is introduced. Confidence measure to help decide if 
our predictions are accurate enough for preventing stragglers by 
influencing the scheduling decisions is needed. The farther a node 
counter vector is from the separating hyperplane, higher are the 
chances of it belonging to the predicted class. To obtain a 
probability estimate of the prediction being correct, the distance 
from the separating hyperplane is converted to a number in the 
range [0, 1]. These probabilities are obtained by fitting logistic 
regression models to this distance. 
 
6)  Summary 

    Wrangler proactively avoids stragglers to achieve faster job 
completions while using fewer resources. Rather than allowing 
tasks to execute and detecting them as stragglers when they run 
slow, Wrangler predicts stragglers before they are launched. 
Wrangler’s notion of a confidence measure allows it to overcome 
modeling errors. Further, Wrangler leverages this confidence 
measure to achieve a reliable task scheduling; thus eliminating 
the need for replicating them. Prototype on Hadoop using an EC2 
cluster of 50 nodes showed that Wrangler speeds up the 99th 
percentile job execution times by up to 61% and consumes up to 
55% lesser resources as compared to the speculative execution for 
production workloads at Facebook and Cloudera’s customers. 
Although it serves as a straggler avoidance approach on its own, 
Wrangler can also be used in conjunction with existing mitigation 
approaches. In the future, we aim to speed up the training process 
by (1) reducing the time spent for capturing training data per node 
in a cluster and (2) training straggler prediction models across 
workloads. 
 
B. Multi-task Learning 
 
Proactive straggler mitigation techniques attempt to schedule 
tasks in a way that limits the effect of stragglers by modeling 
straggler behaviour. Recently, Wrangler showed that 
incorporating predictive models of straggler behaviour in the 
scheduler can lead to large improvements in job completion times. 
    However, to address heterogeneity in the nodes and changing 
workload patterns, proactive model based approaches have 
previously modelled each workload and node independently. 
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Independent models pose two critical challenges: (1) each new 
node and workload requires new training data which can take 
hours to collect, delaying the application of model based 
scheduling, and (2) clusters with many nodes may have only 
limited data for a given workload on each node leading to lower 
quality models. 
    These shortcomings can be addressed if each classifier is able 
to leverage information gleaned at other nodes and from other 
workloads. For instance, when there is not enough data at a node 
for a workload, we can gain from the data collected at that node 
while it was executing other workloads, or from other nodes 
running the same workload. Such information sharing falls in the 
ambit of multi-task learning (MTL) [3], where the learner is 
embedded in an environment of related tasks, and the learner’s 
aim is to leverage correlations between the tasks to improve 
performance of all tasks. 
In this work, explicit knowledge about the dependencies between 
tasks to improve the performance of MTL is exploited. In 
particular, classifiers by workload and by node is grouped. Using 
our formulation to predict stragglers allows us to reduce job 
completion times by up to 59% over Wrangler. This large 
reduction arises from a 7% increase in prediction accuracy. 
Further, equal or better accuracy can be obtained by using a sixth 
of the training data, thus bringing the training time down from 4 
hours to about 40 minutes. In addition, our formulation reduces 
the number of parameters by grouping parameters into node-
dependent and workload-dependent factors. It is seen that,  in the 
event of a particular task having insufficient data, parameter 
grouping can lead to significant gains over a naive MTL 
formulation. 
   Finally, while it can be shown experiments on straggler 
avoidance, our learning formulation is general and can be applied 
to other systems that train node or workload dependent classifiers. 
For instance, Throughput Scheduler uses such classifiers to allot 
resources to tasks, and can benefit from such multitask reasoning. 
 
1) Need for Multi-task Learning 
    Our proposal is to leverage the correlations between the 
classifiers to reduce data collection time. Concretely, a task 
executing on a node will be a straggler because of a combination 
of factors. Some of these factors involve the properties of the 
node where the task is executing (for instance, the node may be 
memory-constrained) and some others involve particular 
requirements that the tasks might have in terms of resources (for 
instance, the task may require a lot of memory). These are 
workload-related factors. When collecting data for a new 
workload executing on a given node, one must be able to use 
information about the workload collected while it executed on  
other nodes, and information about the node collected while it 
executed other workloads. 
    This kind of sharing of information is precisely the motivation 
for the machine learning paradigm known as multitask learning 
(MTL). Each task has its own training data set, although typically 
all training points of all tasks live in the same feature space. The 
tasks are related to each other, and the goal of MTL is to leverage 
this relationship to improve performance or generalization of all 
the tasks. 
 
2) Summary 
In this work, it can be shown the utility of multitask learning in 
solving the real-world problem of avoiding stragglers in 
distributed data processing. Our novel MTL formulation captures 
the structure of our tasks and reduces job completion times by up 
to 59% over prior work. This reduction comes from a 7 point 
increase in prediction accuracy. Our formulation can achieve 
better accuracy with only a sixth of the training data and can 
generalize better than other MTL approaches for tasks with little 

or no data. Finally, although use of straggler avoidance as the 
motivation, our formulation is more generally applicable, 
especially for other prediction problems in distributed computing 
frameworks, such as resource allocation. 
 
C. Dolly 
Small jobs that are typically run for interactive data analyses in 
data centers continue to be plagued by disproportionately long-
running tasks called stragglers. In the production clusters at 
Facebook and Microsoft Bing, even after applying state-of-the-art 
straggler mitigation techniques, these latency sensitive jobs have 
stragglers that are on average 8 times slower than the median task 
in that job. Such stragglers increase the average job duration 
by47%. This is because current mitigation techniques all involve 
an element of waiting and speculation. Cloning of small jobs only 
marginally increases utilization because workloads show that 
while the majority of jobs are small, they only consume a small 
fraction of the resources. The main challenge of cloning is, 
however, that extra clones can cause contention for intermediate 
data. A technique called as delay assignment, which efficiently 
avoids such contention. Evaluation of our system, Dolly [6] , 
using production workloads shows that the small jobs speedup by 
34% to 46% after state-of-the-art mitigation techniques have been 
applied, using just 5% extra resources for cloning. 
 
1) Explanation 
    Achieving low latencies for these small interactive jobs is of 
prime concern to data center operators. The problem of stragglers 
has received considerable attention already, with a slew of 
straggler mitigation techniques being developed. These 
techniques can be broadly divided into two classes: black-listing 
and speculative execution. However, our traces show that even 
after applying state-of-the-art blacklisting and speculative 
execution techniques, the small jobs have stragglers that, on 
average, run eight times slower than that job’s median task, 
slowing them by 47% on average. Thus, stragglers remain a 
problem for small jobs. 
    Blacklisting identifies machines in bad health (e.g., due to 
faulty disks) and avoids scheduling tasks on them. The Facebook 
and Bing clusters, in fact, blacklist roughly 10% of their 
machines. However, stragglers occur on the non-blacklisted 
machines, often due to intrinsically complex reasons like IO 
contentions, interference by periodic maintenance operations and 
background services, and hardware behaviours. For this reason, 
speculative execution was explored to deal with stragglers. 
Speculative execution waits to observe the progress of the tasks 
of a job and launches duplicates of those tasks that are slower. 
However, speculative execution techniques have a fundamental 
limitation when dealing with small jobs. Any meaningful 
comparison requires waiting to collect statistically significant 
samples of task performance. Such waiting limits their agility 
when dealing with stragglers in small jobs as they often start all 
their tasks simultaneously. The problem is exacerbated when 
some tasks start straggling when they are well into their execution. 
Spawning a speculative copy at that point might be too late to 
help. This technique is both general and robust as it eschews 
waiting, speculating, and finding complex correlations. Such 
proactive cloning will significantly improve the agility of 
straggler mitigation when dealing with small interactive jobs. 
Cloning comes with two main challenges. The first challenge is 
that extra clones might use a prohibitive amount of extra 
resources. However, our analysis of production traces shows a 
strong heavy-tail distribution of job sizes: the smallest 90% of 
jobs consume as less as 6% of the resources. 
    The second challenge is the potential contention that extra 
clones create on intermediate data, possibly hurting job 
performance. Efficient cloning requires that we clone each task 
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and use the output from the clone of the task that finishes first. 
This, however, can cause contention for the intermediate data 
passed between tasks of the different phases (e.g., map, reduce, 
join) of the job; frameworks often compose jobs as a graph of 
phases where tasks of downstream phases (e.g., reduce) read the 
output of tasks of upstream phases (e.g., map). If all downstream 
clones read from the upstream clone that finishes first, they 
contend for the IO bandwidth. An alternate that avoids this 
contention is making each downstream clone read exclusively 
from only a single upstream clone. But this staggers the start 
times of the downstream clones. 
Our solution to the contention problem, delay assignment, is a 
hybrid solution that aims to get the best of both the above pure 
approaches. It is based on the intuition that most clones, except 
few stragglers, finish nearly simultaneously. Using a cost-benefit 
analysis that captures this small variation among the clones, it 
checks to see if clones can obtain exclusive copies before 
assigning downstream clones to the available copies of upstream 
outputs. The cost-benefit analysis is generic to account for 
different communication patterns between the phases, including 
all-to-all (MapReduce), many-to-one (Dryad), and one-to-one 
(Dryad and Spark). 
    Dolly, a system that performs cloning to mitigate the effect of 
stragglers while operating within a resource budget. Evaluation 

on a 150 node cluster using production workloads from Facebook 
and Bing shows that Dolly improves the average completion time 
of the small jobs by 34% to 46%, respectively, with LATE  and 
Mantri as baselines. These improvements come with a resource 
budget of merely 5% due to the aforementioned heavy-tail 
distribution of job-sizes. By picking the fastest clone of every 
task, Dolly effectively reduces the slowest task from running 8× 
slower on average to 1.06×, thus, effectively eliminating all 
stragglers. 
 
2)  Does Dolly mitigate stragglers? 
Unless specified otherwise, the cloning budget β is 5% and 
utilization threshold τ is 80%. Dolly improves the average 
completion time of jobs by 42% compared to LATE and 40% 
compared to Mantri, in the Facebook workload. The 
corresponding improvements are 27% and 23% in the Bing 
workload. 
Small jobs (bin-1) benefit the most, improving by 46% and 37% 
compared to LATE and 44% and 34% compared to Mantri, in the 
Facebook and Bing workloads. This is because of the power-law 
in job sizes and the policy of admission control. 
 

 

 

V.   ANALYSIS 
 

TABLE I        ANALYSIS OF DIFFERENT STRAGGLER HANDLING TECHNIQUES 

 

VI. CONCLUSION AND FUTURE SCOPE 

A. Conclusion   
In the course of this study we have reviewed and analysed various 
straggler mitigation approaches. We have studied the broad sub-
categories of straggler mitigation i.e. proactive and reactive 
methods. The proactive techniques proving to have better 
performance along with lower disk and memory utilization. We 
have compared LATE, SAMR, ESAMR techniques of Speculative 
Execution, Dolly technique of Cloning, Proactive Wrangler 
technique along with Machine learning Approach. Wrangler 
technique with Machine learning approach is the best amongst the 
other approaches compared. We have presented a brief analysis of 
the different mitigation techniques based on various performance 
parameters. 

B. Future Scope  
The existing techniques are meant for straggler mitigation or for 
reducing the impact of stragglers. In future we can have 

techniques for elimination of stragglers altogether without 
resource blacklisting and optimal use of resources. Although being 
the best of the existing straggler mitigation approaches Proactive 
Machine learning Wrangler technique has its own shortcomings 
too. For datasets having a huge variance in the numbers obtained 
across multiple nodes this technique is not much effective. 
Thus we could try to generalise the technique for all kinds of 
datasets eventually improving it's confidence measure too.  
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